Warning: sizeof(): Parameter must be an array or an object that implements Countable in /var/www/ocenkasig/data/www/ocenkasig.ru/classes/system/subsystems/selector/executor.php on line 11
Белых А.В. Коэффициент капитализации по модели Хоскольда при наличии долгосрочных темпов роста
Главная / Новости / Научные публикации / Белых А.В. Коэффициент капитализации...
14.05.2015

Белых А.В. Коэффициент капитализации по модели Хоскольда при наличии долгосрочных темпов роста

Вопрос о составе коэффициента капитализации при допущении, что типичный собственник накапливает средства для воспроизводства своего объекта недвижимости по безрисковой ставке, полноценно освещен в работе [1]. В данной работе показано, что различные ситуации с потоками доходов (постоянные потоки доходов, переменные потоки доходов, потоки доходов с постоянным ростом), величиной износа (отсутствие износа, полный износ, частичный износ) и методом отчислений в фонд воспроизводства объекта недвижимости (Инвуд, Хоскальд, Ринг) описываются обобщенной моделью дисконтирования денежных потоков.


Где – искомая стоимость недвижимости;
q – порядковый номер года прогноза;
k – период прогноза;
– чистый операционный доход q-го года;
Y – годовая ставка дисконтирования;
– денежный поток, необходимый для возврата первоначального капитала в конце прогнозного периода;
– доход для возврата капитала.

Денежный поток кроме выручки от продажи имущества содержит в себе накопления из фонда возврата капитала, то есть можно говорить о равенстве.
Если объект за время эксплуатации потеряет стоимость в размере, где – величина износа, соответственно эту стоимость и требуется возместить из фонда возврата капитала. Размер отчислений из фонда может быть представлен формулой:
Где  – функция сложного процента, фактор фонда возмещения,

i – ставка фонда возмещения.

В работе [1] разобраны все типовые ситуации, включая ситуации, описанные в работе [2]. Очевидно, что обобщенная модель может быть применена к любой ситуации, например к ситуации, когда недвижимость растет с неким темпом роста, а отчисления в фонд возврата капитала проводятся по модели Хоскольда. Данная ситуация не была напрямую разобрана в источниках [1] и [2]. Очевидно, что соответствующий коэффициент капитализации может быть выведен простыми алгебраическими преобразованиями. Проделаем это.

Введем предпосылки:

  • Будет происходить частичная потеря стоимости вследствие износа.
  • Недвижимость растет с темпом а.
  • Доходы растут с ежегодным темпом а.
  • Отчисления в фонд возврата капитала происходят по модели Хоскольда.

Имеем:
1.
2.

Выражение 2. равносильно:

Подставляя данное выражение в 1, и заменяя сумму периодических поступлений приведенной стоимостью аннуитета, получим выражение:

Разделим правую и левую часть уравнения на , при этом обозначим за , где
– коэффициент капитализации:

Помножим правую и левую часть уравнения на и разделим на , получим:

Или

Как видно полученное выражение является не самым простым и удобным, тем не менее, данное выражение полностью соответствует разложению коэффициента капитализации по расчетным моделям при введенных предпосылках.

Применяя формулу, необходимо помнить условие сходимости рядов, то есть  > 0 и  .

Литература

    С.В.Грибовский ,«Об учете возврата капитала в методе дисконтирования денежных потоков», Имущественные отношения в Российской Федерации, Выпуск № 4 (139) / 2013.
    Лейфер Л.А. «Метод прямой капитализации. Обобщенная модель Инвуда», 2007 г.

Наши преимущества